
Implementation and Performance Evaluation of Multicast Control Protocol

Takeshi Takahashi†, Miikka Tammi†, Heikki Vatiainen†, Rami Lehtonen‡, Jarmo Harju†

†Tampere University of Technology
Institute of Communications Engineering
P.O.Box 553 FIN-33101 Tampere, Finland
{takahash, tammi3, hessu, harju}@cs.tut.fi

‡TeliaSonera Corporation
Hatanp̈aän valtatie 18, 33100 Tampere, Finland

rami.lehtonen@teliasonera.com

Abstract

Multicast Control Protocol has been proposed to con-
trol multicast traffic transparently from the sources and
the receivers. We have been developing and implementing
this protocol, and this paper introduces the framework of
our implementation in the Linux environment and proposes
some performance enhancements brought by implementa-
tion specific features. This paper also shows the perfor-
mance evaluation of our implementation. Finally, we clarify
the effectiveness and the scalability of this protocol.

1. Introduction

Multicast enables one-to-many communication in data
networks. Compared to unicast, it is very efficient from
the network resource viewpoint, and plenty of applications
have been deployed over IP network. However, the cur-
rent IP multicast architecture has insufficient dynamic con-
trol capabilities over the multicast networks. The lack of
admission control exposes crucial issues to be solved. For
instance, multicast network without control is vulnerable
to the Denial of Service (DoS) attacks [1] from malicious
nodes. In the IP multicast model, any host can transmit
packets to a multicast group without registering itself with
the group. Therefore, network operators are still waiting for
better multicast control schemes before offering more ser-
vices.

To cope with this problem, Multicast Control Protocol
(MCOP) [2, 3] was proposed that facilitates multicast net-
work management. MCOP provides access control to mul-
ticast networks within one domain or autonomous system
(AS) by remote access-lists and controls multicast traffic by
selectively filtering the Internet Group Management Proto-
col [4] (IGMP) messages and UDP multicast traffic. More-
over, MCOP is transparent from multicast clients. The fun-
damental functionality of MCOP is multicast receiver con-
trol and multicast source control. The former controls the
reception of multicast traffic coming into the administrative
network while the latter controls the transmission of mul-
ticast traffic going out of the administrative network. This

feature may be used to block misbehaving hosts from sourc-
ing traffic to certain multicast group. MCOP allows gradual,
group and network specific multicast network deployment.

As a related work, Internet Group membership Authen-
tication Protocol (IGAP) [5] provides IGMP’s group mem-
bership control between hosts and their first-hop routers,
with the addition of user authentication and accounting.
Its control policies are managed by centralized database,
which enables dynamic policy changes. However, it is still
vulnerable against DoS attacks since it does not support
source control. Moreover, it requires specific features to all
the hosts. Another way to control multicast receivers and
sources is static router configuration such as Cisco’s access
lists [6]. However, since the database is stored in the lo-
cal router, this scheme is not suitable for dynamic policy
changes and is not scalable in the larger network. Com-
pared to those schemes, MCOP controls multicast traffic
transparently from the sources and receivers with central-
ized database.

In this paper, we show our implementation of MCOP and
evaluate the performance of the protocol. In Section 2, we
give an overview of MCOP, in section 3, we describe the
framework of our MCOP implementation, in Section 4, we
evaluate the performance, and finally, we summarize this
paper in Section 5.

2. Overview of MCOP

This chapter describes the basic operation of MCOP.
MCOP requires Multicast Control Client (MCC) and Mul-
ticast Control Server (MCS) for its operation. MCS con-
tains the database of the multicast policies while MCC fil-
ters multicast traffic according to the policies from MCS.

2.1. Multicast Control Server

MCS contains information about MCOP controlled mul-
ticast addresses and valid receivers and sources for MCOP
controlled groups. MCC validates the group members
against the information stored within MCS. If information
changes for MCOP controlled group in MCS, MCS is re-



sponsible for updating the information to MCCs that have
validated the group status earlier.

The fact that MCS contains information about config-
ured multicast groups prevents unwanted multicast state to
be appearing in the multicast routers, since the multicast
tree is not created if the multicast information is not found
from the MCS.

2.2. Multicast Control Client

2.2.1. Initialization
MCC controls multicast traffic before the traffic is given

to multicast processing or before the MCC processes IGMP
packets. Multicast control is applied to a specific multicast
address range that is specified by MCS. The MCC behav-
ior discussed within this chapter is applied only to the mul-
ticast groups that pertain to the MCOP controlled multicast
address space. MCOP processing can be separated from the
router operation and implemented as a transparent filtering
bridge between router and directly connected hosts.

Figure 1. MCOP messages

Fig. 1 shows the message exchange procedure between
MCC and MCS so that they can control multicast traffic. At
the initialization phase, MCC is responsible for the connec-
tion to MCS. MCC informs MCS about all its directly con-
nected networks by transmitting Init Request message and,
in response, receives Init message that contains all MCOP
controlled multicast addresses from MCS. After this initial-
ization phase, MCC is ready to filter IGMP messages as
well as multicast traffic.

When MCC receives IGMP Report transmitted from a
directly connected host to an MCOP controlled multicast
group, MCC transmits Validate message to MCS in order
to check the validity of the receiver, and it, in response,
receives Result message that contains valid receiver and
source information. This validation procedure is called re-
mote validation. According to the policy information ob-
tained from the Result message, the MCC either forwards
or drops the the IGMP Report (local validation). Here, upon
receiving Result message, MCC creates multicast group in-
formation cache by storing the information obtained from
remote validation (cache entry update). Cache entry update

is mandatory so that MCC does not have to redo remote
validation. Once the specific clients are allowed to trans-
mit packets according to the Result message, MCC contin-
ues to forward IGMP Reports transmitted from the receiver
unless the controlling policy changes for the receiver. If the
receiver is not found from the list of valid receivers, MCC
starts discarding IGMP Reports.

Likewise, when MCC receives multicast traffic from a
directly connected host to an MCOP controlled group, MCC
performs remote validation and cache entry update. If the
multicast group cache entry exists in MCC, the remote val-
idation and cache entry update are omitted. If the source is
found from the valid source list for this multicast group, the
traffic can be forwarded for further processing (multicast
traffic forwarding). MCC continues to forward the multi-
cast traffic unless the group status changes for the source.
If the source is not found from the list, the MCC discards
the multicast traffic originated from the source and destined
to this multicast group. MCC continues to discard the traf-
fic unless the policy changes for the source.

2.2.2. Update and Reset
The locally stored multicast control information cannot

be changed except of updating and resetting.
The policy updates are informed by unsolicited Result

messages transmitted by MCS. Updates are invoked when
there are changes to valid sources or receivers for that
multicast group. The change in group member informa-
tion affects directly the management of active receivers and
sources, which are either set to passing or filtering state by
this message. If the policy is changed so that some MCOP
multicast clients are not allowed to receive specific multi-
cast traffic any more, the MCC generates IGMP Leave and
transmits it to the upstream multicast router on behalf of the
clients. This IGMP Leave injection feature minimizes the
policy changing delay. The MCC discards further IGMP
packets for this multicast group originating from the re-
ceiver.

The policy resets are invoked by timer expiration. When
MCC judges that MCOP controlled clients are neither re-
ceiving nor transmitting, i.e. inactive, MCC transmits Reset
message to MCS so that MCC can delete all the control-
ling information concerning the MCOP controlled clients
provided cache entry timer is not set. The judgement for
inactivity is based on the timeout expiration, i.e., if MCC
doesn’t receive any IGMP packets from these clients for a
certain timeout duration and if MCC does not receive any
UDP packets from these clients for a certain timeout dura-
tion, MCC judges that those clients are not active any more,
and transmits Reset message. If the MCC receives IGMP
messages or UDP multicast traffic from the client that is
deleted from local database, it will perform remote valida-
tion from the beginning. In case that the cache entry timer is
set, MCC does not immediately send Reset message upon
judging its inactivity and, instead, awaits the clients’ activ-
ity for another duration specified by cache entry timer be-
fore sending Reset message. The value of cache entry timer
is specified by Init message.



2.3. Example Service Scenario

MCOP is intended for network management purposes
as we mentioned above, and one possible usage of MCOP
is to connect the control mechanisms together with some
application and allow billing of multicast services such as
streaming. Fig. 2 shows the example network. First, we have
one client that is listening specific multicast traffic. To avoid
unnecessary traffic flooding, the network may utilize vir-
tual LANs, which may enable individual control of each re-
ceiver in switch based network.

Figure 2. Billing System

When a new client wants to join a specific multicast ser-
vice like TV broadcasting, the client has to authenticate
himself via web authentication system. The web authenti-
cation system sends the receiver policy change to the MCS.
Then MCS transmits unsolicited Result message to MCC to
start the forwarding of the multicast traffic to the client.

3. Framework of MCOP Implementation

Figure 3. Our implementation network

Fig. 3 shows our experimental network. Our MCOP im-
plementation is based on Linux environment, and our soft-
ware shall become open source [7]. In this network, three
virtual LANs are connected to the router, where MCC is
also implemented. This MCC has TCP connection with the
MCS that resides in the WAN network. Although the loca-
tion of MCS is not restricted as long as MCC has TCP con-
nection with MCS, the closer MCS is to MCC, the faster the
validation procedure is. In this network, MCS is two hops
away from MCC. Here, we utilize IGMP version 2 [4] over
IP version 4 network.

3.1. Packet filtering

MCC controls UDP multicast traffic and IGMP traffic
before their routing decisions are made. From the software
point of view, MCC functions just after IP packet process-
ing. In our implementation, the IP packet processing is done
by the tool “iptables” [8], which makes it possible to process
IP header of packets so that it can filter (ACCEPT, DROP,
or QUEUE) packets. When the filtering policy is ACCEPT,
packets are further processed for the routing decision. When
the filtering policy is DROP, packets are simply discarded.
When the filtering policy is QUEUE, packets are lifted up
to the MCC application.

Figure 4. MCC layers

Therefore packets are processed in three different layers
: kernel, IP header filtering (iptables) and MCC application
(Fig. 4). Incoming packets are caught by kernel, and ipta-
bles processes the IP header of these packets. Although ipt-
ables handles IP header processing including filtering as a
part of kernel, we describe it as the uppermost layer of ker-
nel since it provides user application interfaces.

When a packet destined to a new multicast group arrives
to MCC, iptables lifts it up to the MCC application layer
since no filtering policy for this multicast traffic is speci-
fied yet. Then the MCC application invokes remote valida-
tion by communicating with its MCS. Those packets arriv-
ing to the MCC application during the remote validation are
just discarded in the iptables layer. Upon finishing the re-
mote validation, the MCC application sets new policies di-
rectly to the iptables layer according to the Result message
so that any traffic transmitted to the same multicast group
can be filtered in the iptables layer. This multicast traffic
is then verdicted by the iptables instead of MCOP applica-
tion layer.

When an IGMP packet destined to new multicast group
arrives to MCC, iptables lifts it up to the MCC applica-
tion layer as in the case of multicast UDP packets. Then



the MCC application invokes remote validation by commu-
nicating with MCS. Upon finishing the remote validation,
the MCC application sets new policies directly to the ipta-
bles according to the Result message so that IGMP pack-
ets related to the same multicast group can be filtered by the
iptables. Here, only IGMP Report can be caught by its des-
tination address. IGMP Leave and IGMP Query have the
values of ALL-SYSTEMS.MCAST.NET (224.0.0.1) and
ALL-ROUTERS.MCAST.NET (224.0.0.2) respectively in
the destination field of IP header regardless of the multicast
group address field of the IGMP header. Therefore MCC
is required to catch all the IGMP Leaves so that MCC can
keep track on which clients are still active in the specific
multicast group. Yet, MCC does not have to inspect IGMP
Query. Therefore, IGMP Queries are simply passed with-
out any specific action.

As can be seen, MCC application layer catches only the
first IGMP packet and the first multicast UDP packet of any
multicast group to invoke remote validation. MCC applica-
tion layer never catches traffic from iptables layer after the
remote validation since local validation is performed by the
iptables according to the access list instead. Therefore, the
performance of local validation depends on the filtering per-
formance itself. In this case, we can expect the same scal-
ability level of the filtering software which has been reli-
able in the view of scalability for years. Here, the iptables
filters only the traffic coming from directly connected mul-
ticast clients. No packets coming from outside the network
will be filtered by the iptables.

In this implementation, in order to enhance the perfor-
mance, we developed some implementation specific fea-
tures: IGMP message injection, specific address block or-
dering, and suppressed packet inspection.

3.2. IGMP message injection

Upon receiving Result message (including unsolicited
Result message) from MCS, MCC analyzes the message
and stores the objects obtained from the Result message.
Simultaneously, the MCC modifies the iptables configura-
tion to take load off the application program. If the mes-
sage indicates the status change of one receiver to ”deny”,
the MCC transmits an IGMP Leave on behalf of the multi-
cast client. This feature significantly reduces the policy up-
dating delay and is mandated by the draft.

Likewise, when MCC receives unsolicited Result mes-
sage that indicates the status change of one receiver as ”al-
lowed”, the MCC transmits an IGMP Query to the clients.
If the client still wants to join the multicast group, the client
immediately transmits the IGMP Report to the router. Al-
though this is not specified in the draft, it minimizes the
policy updating delay.

3.3. Specific address block ordering

In our MCC implementation, the most time consuming
functionality is the local database updating. To minimize
the local database updating time, we established a specific

rule for the Group Member object of Result Message. In our
implementation, Group Member object is constructed per
interface policy though the draft allows the Group Mem-
ber object to contain information for several interface poli-
cies. Moreover, the order of the address blocks in the Group
Member object must be in ascending order so that further
sorting can be avoided inside MCC.

Since MCC can expect that the default filtering rule of
the whole interface appears at the end of the address blocks
of the Group Member object of Result message, MCC does
not search the default interface policy information from the
Group Member object.

More specific network filtering rule must appear in the
earlier stage of the filtering table. Since the blocks in the
Group Member object were already sorted in ascending or-
der, we can subsequently add that information to the filter-
ing table instead of sorting the blocks.

3.4. Active client inspection

In order to judge the inactivity of MCOP multicast
clients, MCC is required to manage timer values. There-
fore, upon receiving a packet from validated MCOP
multicast clients, MCC is required to update the timer
value. Compared to the normal routers that simply in-
spect the source address and destination address pro-
vided the packet is destined to the router itself, this feature
has too much burden for each packet transaction. Al-
though these inspections are acceptable for IGMP packets
since these packets are arriving at MCC in each constant in-
terval, they are undesirable for UDP packets since UDP
packets are arriving at MCC successively with very lit-
tle packet interval.

Our implementation does not inspect the arrival of UDP
packets upon receiving each UDP multicast packet but in-
spect it in each constant time, i.e. window time (default
value is 1 second). When UDP packets are arriving, ipta-
bles just filters the packet according to the policy without
checking and updating timer value. Instead, MCC checks
the packet counters once per each window time. If MCC re-
ceived packets during the last window time, MCC updates
the timer value concerning to the multicast traffic. Note that
MCC application does not catch the packet but simply in-
spects the packet counters. This procedure reduces the bur-
den of MCC and reduces the packet transaction time when
receiving UDP packets.

4. Evaluation

4.1. Packet transaction time

Here, we evaluate the packet transaction time in the ap-
plication layer at MCC and MCS. Our implementation is
based on Linux boxes. MCC is a Linux box composed of
Celeron 633 MHz processor and 320 MB memory while
MCS is a Linux box composed of the same processor as the
MCC and 256 MB memory.



4.1.1. IGMP packets (Receiver case)
When MCC has multicast clients in its directly con-

nected networks, MCC must control IGMP packets trans-
mitted from them. Therefore, transaction time for one
IGMP packet was measured here. Here, 500 differ-
ent IGMP packets were transmitted from the directly
connected clients. Those 500 IGMP packets were inter-
cepted by the MCC, which invoked the remote validation
with its MCS.

 0

 5

 10

 15

 20

 25

 0  50  100  150  200  250  300  350  400  450  500

V
al

id
at

io
n 

tim
e 

  m
se

c

The nuber of clients

"log_time_remote05.dat"
"log_time_mcs05.dat"

Figure 5. Remote validation time for IGMP
packets

The solid line in Fig. 5 shows the remote validation time
for each IGMP packet. The X-axis shows the number of
IGMP packet, which is equivalent to the amount of stored
Group Member object information. The Y-axis shows the
transaction time for an IGMP packet. This time is measured
from the time a packet arrives at MCC application to the
time the packet leaves MCC application including MCOP
message transaction time inside MCS and network delay
between MCC and MCS. In this evaluation, the round-trip
time between MCC and MCS was around 0.43 millisecond.
As can be seen, the remote validation time is slightly in-
creasing depending on the number of the clients. This is be-
cause MCC has to search policy information in the updating
situation. The remote validation time is formulated in equa-
tion (1).

f(x) ≃ 0.0275x+ 4.06[msec] (1)

Here,x denotes the number of clients whilef(x) de-
notes validation time. Although the remote validation time
is increasing as the number of clients increases, the incli-
nation of the validation time is rather small. Moreover, the
remote validation happens only one time per a new client
for a multicast group. Therefore, MCC is working in a scal-
able way in the case of IGMP packet transaction.

The broken line in Fig. 5 shows the MCOP message
transaction time inside MCS during the remote validation.

This time was measured from the time that MCS application
received Validation message to the time that MCS returned
Result message to MCC. As can be seen, the packet trans-
action time of MCS does not change. Since MCS database
contains only the information of the allowed hosts, the
amount of the information inside the database is not propor-
tional to the number of multicast clients. Moreover, since
MCS is storing policy information by aggregating addresses
with network mask value, the amount of the information
stored in the database is not proportional to the number of
the allowed multicast clients. Therefore MCS shows good
scalability.

After the first set of 500 IGMP packets, the same 500
IGMP packets were transmitted from those directly con-
nected multicast clients. Since MCC has policy information
for those clients and MCC has already set policy in the ipt-
ables layer, none of those packets are caught by the MCC
application layer and local validation was performed by the
iptables.

4.1.2. UDP packets (Sender Case)
We also evaluated the packet transaction time for UDP

packets. The result were quite identical to Fig. 5. Similar to
the case of IGMP packet transaction time, the remote vali-
dation time is slightly increasing depending on the number
of the clients. This is also because MCC has to search pol-
icy information in the updating situation. The remote vali-
dation time is formulated in equation (2).

f(x) ≃ 0.0275x+ 3.74[msec] (2)

Here,x denotes the number of clients whilef(x) denotes
validation time. Equation (1) and equation (2) are similar
though the intercept value is slightly different. The slight
difference comes from the difference of the header fields.
MCOP needs to inspect IP header for UDP packet while
it needs to inspect IP header and IGMP header for IGMP
packet. Although the remote validation time is increasing as
the number of clients increases, the inclination of the vali-
dation time is rather small. Moreover, the remote valida-
tion happens only at the start of traffic in a multicast group.
Therefore, MCC does not have any problems for the scala-
bility in the case of multicast UDP packet transaction.

Similar to the case of IGMP packet transaction, the
packet transaction time inside MCS is constant. Likewise,
local validation was performed by the iptables and our MCC
application does not catch any packets. Therefore, the per-
formance follows the iptables though it is not the main con-
cern of this paper.

4.2. Policy updating delay

When multicast controlling policy is changed, MCS
transmits Result message to MCC, which immedi-
ately changes the filtering policy according to the mes-
sage. Fig. 6a shows the case in which the policy is changed
so that one specific client cannot receive the multicast traf-
fic any more. Upon receiving Result message, MCC trans-
mits IGMP Leave to the router on behalf of the client. This



feature of MCC is designed to minimize the policy up-
dating delay. Here, MCC can be implemented over the
multicast router as our implementation is. Upon receiv-
ing IGMP Leave, the router transmits several (Default:
2) [4] Query messages and stops forwarding further mul-
ticast traffic unless any IGMP Reports are received be-
fore the response timer(Default: 1 second) [4] of the last
IGMP Query expires. Here, we define the policy chang-
ing delay as the time after MCC changes its database and
until clients do not receive any multicast traffic. In our im-
plementation, since we configured the router so that it
transmits two Queries with Max Response time of 0.5 sec-
ond, the total policy changing delay was 1 second. Here,
the packet transmission delay in the network can be ig-
nored since it was less than a millisecond and was very
tiny value compared to the IGMP protocol timers as men-
tioned above.

Since the router does not have to wait for a certain
amount of time specified by Group Membership Interval
(default: 260 seconds) [4] to stop forwarding multicast traf-
fic, the IGMP Leave injection feature significantly mini-
mizes the policy updating delay. However, since multicast
multimedia receiver usually has some decoding buffer, the
decoding process continues for a while until the decoding
buffer becomes empty. For instance, VLC [9] sets 300 mil-
lisecond buffering time as a default value.

a) IGMP Leave b) IGMP Query

Figure 6. IGMP message injection

Fig. 6b shows the case in which the policy is changed
so that a specific client is allowed to receive the multicast
traffic, then MCC transmits IGMP Query to the multicast
client on behalf of the router. Upon receiving IGMP Query,
the client has to wait for a certain amount of time that is se-
lected from the range between 0 to Max Response Time
(Default:1 second) [4]. Then it transmits IGMP Report to
the multicast router. Here, we define the policy changing
delay as the time after MCC changed its database and until
clients start receiving the multicast traffic. In our implemen-
tation, since MCC transmits IGMP Query with default Max
Response Time value, the total policy changing delay was
0.5 second in average. Here, the packet transmission delay
in the network can be ignored since it was less than a mil-
lisecond and was very tiny value compared to the timeout
value.

Since the router is not required to wait for a certain
amount of time specified by Query Interval (default: 125
seconds) [4] to receive IGMP Report from multicast clients,
the IGMP Query injection feature significantly minimizes
the policy update delay. However, since multicast multime-
dia receiver usually needs to buffer some packets before de-
coding, the actual decoding process starts after a couple of
seconds depending on the decoding buffer size.

5. Conclusion

This paper introduced the framework of our MCOP im-
plementation in Linux environment and proposed some im-
plementation specific features that enhance the MCOP per-
formance. Our evaluation clarified that MCOP is working
effectively and in a scalable way. MCOP is traffic control-
ling protocol and is able to cooperate with plenty of other
protocols such as authentication protocols and security pro-
tocols. It is also possible to establish fault tolerant system
so that we can avoid MCS to be the single point of failure.

Our current implementation is based on IGMP version
2 over IP version 4 network. Since IGMP version 3 sup-
ports additional features, some modifications are necessary
in order to make our software function correctly. Especially,
source filtering feature of IGMP version 3 enables MCOP
to control multicast traffic by sender’s source address. We
will implement those features as our future work.

References

[1] Felix Lau, Stuart H. Rubin, Michael H. Smith, and Ljiljana
Trajkovic, “Distributed Denial of Service Attacks,”IEEE In-
ternational Conference on Systems, Man, and Cybernetics, pp.
2275–2280, October 2000.

[2] R.Lehtonen, J.Soini, J.Majalainen, H.Vatiainen, and
M.Tammi, “MCOP operation for first hop routers,”In-
ternet draft draft-lehtonen-mboned-mcop-operation-00.txt,
November 2003, Work in progress.

[3] H.Vatiainen, R.Lehtonen, and J.Soini, “Multicast Control Pro-
tocol (MCOP) over COPS,” Internet draft draft-vatiainen-
mcop-cops-00.txt, December 2003, Work in progress.

[4] W. Fenner, “Internet Group Management Protocol, Version
2,” RFC 2236, November 1997.

[5] Tsunemasa Hayashi, Daisuke Andou, Haixiang He, and
Teruki Niki Wassim Tawbi, “Internet Group membership
Authentication Protocol,” Internet draft draft-hayashi-igap-
03.txt, August 2003, Work in progress.

[6] Jeff Sedayao,Cisco IOS Access Lists, O’Reilly & Associates,
Inc, 2001.

[7] “MAD/TUT Project,” http://www.atm.tut.fi/mad/.
[8] “The netfilter/iptables project,”http://www.netfilter.org.
[9] “VideoLAN,” http://www.videolan.org.


