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Abstract—Cloud computing provides a multitenant feature
that enables an IT asset to host multiple tenants, improving its
utilization rate. The feature provides economic benefits to both
users and service providers since it reduces the management cost
and thus lowers the subscription price. Many users are, however,
reluctant to subscribe to cloud computing services due to security
concerns. To advance deployment of cloud computing, techniques
enabling secure multitenancy, especially resource isolation tech-
niques, need to be advanced further. Difficulty lies in the fact
that the techniques range and cross various technical domains,
and it is difficult to get the big picture. To cope with that, this
paper introduces technical layers and categories, with which it
identifies and structures technical issues on enabling multitenancy
by conducting a survey. Based on the survey result, this paper
discusses technical maturity of multitenant cloud computing from
the standpoint of security and the needs for developing both
technical and operational security toward the development and
wide deployment of multitenant cloud computing.

Index Terms—Multitenancy, cloud computing, security, re-
source isolation

I. INTRODUCTION

The development of cyber societies and online transactions
imposes continuously expanding IT budgets on organizations.
To handle this, organizations are redesigning their procurement
and management strategies for IT infrastructure. Cloud com-
puting services become their candidate solutions since they
provide economic benefits; they reduce hardware and software
expenses while canceling out related maintenance and upgrade
costs. They offer on-demand, flexible access to appropriate
amounts of computation, memory, and storage resources. The
advantage is brought by their multitenant feature, which en-
ables an IT asset to host multiple tenants.

Though cloud computing has quickly gained popularity,
many organizations are still reluctant to use the services
in consideration of potential security threats to their data.
Multitenant feature must ensure that each tenant’s data is kept
confidential so that only authorized tenants can access it. Thus
resource isolation techniques are one focus of multitenancy’s
security issues. To advance the development and deployment
of cloud computing, security issues and approaches for the
techniques need to be clarified. Difficulty lies in the fact that
these techniques range and cross various technical domains
including cryptography, virtualization, and programming.

To facilitate and advance the development of cloud comput-
ing, this paper introduces technical layers and categories, with

which it identifies and structures security issues of multitenant
techniques by conducting a survey. The security issues and
techniques addressed in this survey are not limited to a
specific technical domain but span assorted such domains since
multitenancy is enabled by various techniques, but this survey
focuses on issues related to resource isolation and depicts
one snapshot of such security techniques to maintain the
interests of readers. Based on the result, this paper discusses
the technical maturity of multitenant cloud computing from
the standpoint of security and discusses the needs for devel-
oping both technical and operational security toward wider
deployment of multitenant cloud computing.

The rest of the paper is organized as follows: Section II
introduces the technical layers and classifications, Section III
describes the survey methodology, Sections from IV to VIII
address security issues for each of the technical layers, Section
IX discusses technical maturity and the needs for advancing
security operations, and Section X concludes the paper.

II. TECHNICAL LAYERS AND CLASSIFICATIONS

This section introduces technical layers and categories that
are useful to get a big picture of multitenancy techniques.
Cloud computing services are often classified into three vari-
eties: Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS); the latter giving
less control to end-users and the former requiring that they
ensure their own security. Though this classification is useful
for discussing business issues and the degree of control from a
customer standpoint, another classification is needed to discuss
technical issues.

This paper defines five technical layers and their categories,
as in Table I. HW&SW primitive layer techniques are fun-
damental to the other layers’ techniques, and are comprised
of programming code and hardware processing techniques.
Hypervisor layer techniques isolate tenants by providing sepa-
rate virtual machines (VMs). The isolation is securely enabled
if both VMM and VM are functioning properly. OS-layer
techniques isolate users by isolating their processes, thus the
customizability of the isolation for each user is bound to that of
processes, and the isolation is securely enabled if privilege is
separated and kernel is functioning properly. Application layer
techniques isolate logical resources divided by a database for
each user so that the isolation is not bound to process and



TABLE I
TECHNICAL LAYERS AND CATEGORIES

Layers Categories

Web Server-side security

Client-side validation

Application Secure data storing

User data isolation

Authentication and authorization

Operating System Privilege separation

Kernel integrity

Hypervisor VMM security

VM security

HW&SW Primitive Programming code

Hardware processing

is fully customizable in the application layer. Data needs to
be securely stored and isolated between users, and access to
that needs to be authenticated and authorized to enable secure
isolation. Web layer techniques distinguish users and accept
their accesses to multitenant cloud computing services over
networks. Any incident in this layer may cause malfunction
in the other layers. To avoid that, server-side application needs
to be secured and client-side application needs to be validated.

III. SURVEY METHODOLOGY

This paper surveys literature addressing security issues and
techniques of multitenant cloud computing. The security issues
and techniques addressed in this survey are not limited to a
specific technical domain but span assorted such domains since
multitenancy is enabled by various techniques. We mainly sur-
veyed journals, papers, and technical notes published by ACM,
Black Hat, IEEE, Usenix, and the other notable conferences
from 2002 to 2011, and summarized prominent ones. Though
this paper identifies emerging or renewed major security issues
related to multitenant cloud computing, it does not provide an
exhaustive list of such issues since there exist a tremendous
amount of techniques supporting multitenancy, and that list is
of very little interest to the research community. The survey
describes one snapshot of security issues of multitenant cloud
computing, focusing on resource isolation.

IV. HW&SW PRIMITIVE LAYER SECURITY

Multitenancy service developers usually assume that under-
lying hardware and software primitive tools are reliable and
secure, but that is not always the case.

A. Programming Code

A software is a set of programming codes, which is carefully
developed by software developers to avoid software bugs
causing security flaws. Some programming codes, however,
ultimately contain security risks by their nature. The risks and
countermeasures are elaborated below.

1) Managed Runtime Security: While .NET CLR and Java
VM have long been considered trustworthy software, in reality
their security is rapidly becoming mediocre.

Two major managed code platforms, .NET and Java, could
be abused by planting malicious code inside the Framework
and managed code runtime [1], [2]. In case of .NET MSIL,
the abuse is taken place by locating a target DLL in the Global
Assembly Cache (GAC), analyzing it, modifying its MSIL
code, recompiling the code to a new DLL, then deploying
the new DLL while overwriting the original. With the above
technique, an attack can plant malicious code inside the
framework. Such code is not easily detected: code reviews
will not detect backdoors installed inside the Framework since
the payload is not in the code itself, but rather it is inside
the Framework implementation. The techniques is a post
exploitation type attack, and the similar steps are applicable
to JAVA’s JVM.

On the other hand, JavaSnoop [3] allows introspection of
code executed under Java VM, e.g. interception of method
calls, alteration of parameters and return values, and code
insertion, without access to the source code. Traditionally, Java
programs seem to be unrelated to this dynamic introspection
problems in the Web application world. The arrival of JavaS-
noop will refute the long-standing implicit assumption that
Java code and data flows cannot be tweaked on the fly.

2) Sandboxing: Sandboxing is an effective means of elim-
inating side effects of executing untrusted binaries in a hosted
environment. Sandboxing could be enabled by kernel ex-
tension or by modifying guest codes. Different from these,
Vx32 [4] is a user-level sandboxing that does not require
above modifications. It implements code sandboxing through a
combination of dynamic binary translation and x86 segmented
address space. Their translation mainly instruments branching
instructions, keeping the rest of the unprivileged x86 instruc-
tions intact. While Vx32 provides a good isolation feature
in terms of memory, data contamination through I/O may
occur. Data and network layer isolation can be implemented
by system call interposition and type enforcement techniques.

B. Hardware Processing

Multitenancy service developers usually assume that isola-
tion works as intended, both at the software and hardware
layers. Ultimately the isolation feature may fail on certain
occasions due to the innovative nature of software.

The presence of side channels is identified in the shared
memory hierarchy of a Pentium 4 with hyper-threading fea-
tures [5]. Both the Level-1 and Level-2 caches of the Pentium
4, with the hyper-threading feature turned on, can lead to
information leakage from one process to another, potentially
hostile, process. For instance, OpenSSL keys could be theft.

An examination on instruction sets of Intel Pentium archi-
tecture is reported [6], It identified several sets of sensitive
(e.g., unprivileged but hazardous) instructions and concluded
that current virtual machine monitors (VMMs) for Intel archi-
tecture should not be used to enforce critical security policies.



V. HYPERVISOR-LAYER SECURITY

Hypervisor-layer techniques isolate tenants by providing
separate VMs. This section describes security issues for VMM
and VM respectively.

A. VMM Security

VMMs take an essential role for hypervisor and need to be
trustworthy; yet they suffer from the following concerns.

1) VMM Vulnerabilities: VMMs cannot be immune to
vulnerabilities since they are non-trivial pieces of software.
Vulnerabilities of six major VMMs and emulators are investi-
gated through source code auditing and fuzzing techniques [7].
All were found to have major flaws, leading to VMM abort and
other exploitable areas. The presence of VMM vulnerabilities
is further underscored by recent common vulnerabilities and
exposures (CVE) [8] entries on, for instance, VMware and
Xen. As with any other software, one should not render VMM
as a single trustworthy piece of software.

2) VM-Based Rootkits: VM-based rootkits may take control
of VMMs. While traditional kernel rootkits insulate them-
selves in the OS kernel, VM-based rootkits are in the VMM
layer, thereby hiding from the kernel rootkit detector. Proof-
of-concept VM-based rootkits were developed using Virtual
PC and VMware, empirically observing the stealthiness of
such an environment by measuring installation and boot times,
along with memory footprints [9]. Another VM-based rootkit,
Blue Pill [10], can be dynamically installed on the fly without
requiring system reboot. Blue Pill can leverage the nested
virtualization feature of AMD SVM, enabling it to insulate
itself in the VMM layer while another hypervisor is running.

3) VMM Transparency: Another concern is the detectabil-
ity of VMMs. It becomes especially evident in the context
of hosting potentially hostile code, such as honeypot, which
needs to thwart VM detection. [11] argued that the idea of
building a transparent VMM is infeasible, based on speculation
that various discrepancies between the physical machine and
VM provide a number of clues: hardware abstraction, time
sources, and overhead. [12] identified four quadrants of VMM
detection problem space and run experiment with remote
detection of VMM types. It detected the presence of a specific
processor architecture (Pentium IV) and type of VMM (Linux,
Xen, VMware) by a remote verifier. Pinpointing the type and
version of VMM may lead to a renewed threat, since it may be
possible to employ effective attacks against a specific VMM.

4) Platform Integrity: In multitenant environments, we tend
to blindly trust underlying infrastructure such as VMM and
the OS kernel. The chain of trust should in fact be assured at
every layer of the software stack. Among various approaches
is Terra [13], which is a prototypical trusted VMM that assigns
different VMs for each application. Since each application may
deploy optimized OS, the integrity of the security throughout
the layers could be preserved. Another is the Trusted Platform
Module (TPM), a security specification defined by Trusted
Computing Group [14], which is being extended to accom-
modate virtualization techniques. A virtual TPM (vTPM) [15]
is a software embodiment of the TPM. It can be run on an

external co-processor card as well as on a VM. It extends the
existing TPM 1.2 command set to accommodate vTPM, thus
makes TPM accessible to every VM.

On the other hand, there exist a tool that measures the
integrity of VMs running on top of hypervisor. One such tool is
HIMA [16], a hypervisor-based agent. To measure integrity, it
is required to isolate the measurement agent and measurement
target, and to make sure that only the VMs that have passed
the integrity check are running; thus only healthy programs
are executed.

B. VM Security

On top of VMM are VMs, where tenants reside. Though
VMs need to be secure and isolated among each other, this is
not always the case.

1) Introspection: VM debugging and introspection tech-
niques pose significant challenges to guest VMs under un-
trusted VMMs since they enable tracking of processing and
data flows inside the guest VM, requiring no privilege inside
it. One such implementation is MoonSols’ LiveCloudKd [17],
which debugs a guest OS from the hypervisor. LiveCloudKd
allows us to run the KD (Windows kernel debugger) and
WinDbg for introspecting guest Windows VMs from the
Microsoft Hyper-V R2 hypervisor. Another such one is the
VIX tool suite [18], which is a VM introspection system for
Xen and can track processes of guest VMs from VMM by
mapping a DomU virtual memory address into Dom0.

2) Redundancy Cancellation: Hypervisors usually isolate
VMs, but complete isolation is not necessarily the best solution
from the viewpoint of efficient resource utilization, and it is
sometimes preferable to share resources among VMs without
compromising security. sHype [19] enables resource sharing
among VMs without compromising security. To do that, it
enforces Mandatory Access Control (MAC)-based security
policy. It does not cause significant processing overhead.

VI. OS-LAYER SECURITY

On top of VMs are OSs, which were invented decades ago,
and whose security aspect has been researched until now. Only
handful of studies are visible lately in this area since OS is
an established technique. Among them are privilege separation
and kernel integrity issues.

A. Privilege Separation

Privilege separation, or compartmentalization, controls ac-
cess in order to separate user privileges. End systems must be
capable of doing that based on confidentiality and integrity
requirements to provide system security, and OS security
mechanisms are the foundation for ensuring such separation.

Discretionary Access Control (DAC) is a conventional ap-
proach, which enables individual users to set up their own
access policy. The DAC-based approach, however, is vulnera-
ble, especially to Trojan horses and the exploitation of buggy
software. As a consequence, application security mechanisms
are vulnerable to tampering and bypass, and malicious or
flawed applications can easily cause failures in system security.



To handle this, MAC-based approaches are studied. MAC
enforces system policies: system administrators specify poli-
cies, which are checked via runtime hooks inserted into
many places in the OS’s kernel. Thus individual users cannot
freely specify policies on their own files. Security Enhanced
Linux [20] implemented MAC, and its architecture has been
subsequently mainstreamed into Linux and ported to several
other systems, including the Solaris OS, FreeBSD OS, and
Darwin kernel. Another example is AppArmor [21], which
also implemented MAC and supported Linux distributions
including SUSE, PLD, Pardus Linux, Annvix, Ubuntu, and
Mandriva. Tools exist for analyzing and comparing the quality
of protection (QoP) offered by MAC systems. One such tool
is VulSan [22]. It encodes security policies, system states, and
system rules using logic programs and computes a host attack
graph and the vulnerability surface when an attack scenario is
given.

However, they are not capable of handling ambient author-
ity, which results in enabling an application to fully access a
user’s data. To cope with the issue, Capsicum capabilities [23]
were introduced. This is an extension of UNIX file descriptors
and reflects rights on specific objects such as files or sockets,
and may be delegated from process to process in a granular
way in the same manner as other file descriptor types via
inheritance or message-passing. This extension supports appli-
cation compartmentalization, the decomposition of monolithic
application code into components that will run in independent
sandboxes to form logical applications.

B. Kernel Integrity

Exploitation of vulnerabilities in the OS kernel or inadver-
tent execution of untrusted software by a privileged user may
lead to introduction of covert malware inside the kernel; i.e.,
a kernel rootkit. This could be prevented by employing VM
introspection techniques. NICKLE [24] is a VMM feature ex-
tension for performing memory shadowing and runtime kernel
code integrity checks. NICKLE is claimed to be a widely
applicable technique for multiple VMMs, such as QEMU,
VirtualBox, and VMware. NICKLE successfully defended the
kernel against 23 real-world kernel rootkits.

VII. APPLICATION-LAYER SECURITY

Application-layer techniques provide logical resource isola-
tion following a database for each user and data confidentiality.
Recent such techniques are introduced below.

A. Secure Data Storing

Recent researches on securely storing user data and main-
taining its usability are introduced below.

1) Encrypted Data Manipulation: The user’s data must
be confidential and protected from unauthorized access, and
proposals have been made in that regard. Progressive elliptic
curve encryption (PECE) [25] is a type of proxy reencryption
[26], which allows a piece of data to be encrypted multiple
times using different keys such that the final cipher text can
be decrypted in a single run with a single key. With this

mechanism, a data owner may encrypt data before uploading it
to a service provider’s server which, upon request, re-encrypts
it by using the public key of the authorized party who wishes
to access it, and the party receives and decrypts it with a single
key. Note that the service provider knows no key to decrypt the
data here, thus only the data owner can access the data. This
enables secure usage of an untrustworthy service provider.

On the other hand, users may wish to manipulate their
encrypted data stored at the provider’s server (e.g., retrieve
data) without decrypting that at the server in order to preserve
confidentiality. Homomorphic encryption [27], [28] could
achieve that. It is a form of encryption where a specific
algebraic operation performed on the plain text is equivalent
to another (possibly different) algebraic operation performed
on the ciphertext. With this scheme, cloud service providers
can perform complicated processing of data without being able
to see it. This helps make cloud computing compatible with
privacy.

2) Data Integrity: Techniques to ensure storage correctness
across multiple servers or peers are proposed [29–31] to secure
data integrity. Different from that, [32] designed a scheme
that supports secure and efficient dynamic operations on data
blocks, including data update, delete, and append. It allows
the user to generate a homomorphic pre-computed token that
is erasure-coded and stored locally. This is used to determine
the misbehaving server.

3) Data Redundancy Cancellation: Deduplication, a tech-
nique that stores only a single copy of redundant data and
provides links to that copy instead of storing other actual
copies of the data, is now widely used by cloud storage
providers to efficiently store data. Yet such deduplication
may cause security risks. [33] pointed out the potential risks
of cross-user source-based deduplication and described how
such deduplication can be used as a side channel to reveal
information about the contents of other users’ files, and as a
covert channel by which malicious software can communicate
with the outside world, regardless of the firewall settings of
the attack machine. To handle this, the article discussed three
candidate schemes: using encryption to prevent deduplication,
performing deduplication at the server, and setting a random-
ized threshold for running deduplication. Though these are not
perfect solutions, they provide higher privacy guarantees while
slightly reducing the benefit of deduplication.

B. User Data Isolation

Individual users’ data needs to be isolated to preserve
privacy. Two major approaches for that are introduced below.

1) Process Isolation: Data in a multitenant system needs
to be carefully treated so that it cannot be mixed with another
user’s. Information flow control (IFC) [34] tags data entering
the system and isolates the data belonging to different users.
[35] implements IFC constraints in the Erlang programming
language by leveraging its shared-nothing computation, mes-
sage passing, and lightweight processes to provide uniform
privacy preservation in a highly concurrent application.



2) Selective Decryption Techniques: User data needs to be
read by the intended users, but must not be read by the others.
To enable that, cryptographic techniques enabling selective
decryption have been researched. One fundamental technique
enabling that is the identity-based encryption scheme [36],
which enables a user specified by an identity to decrypt data.
[37] designed a mutual authentication system that allows users
in the same domain to securely share data for cloud storage
by using the technique. There could be benefit in endowing
decryption rights to a group of users instead of a single user
designated by an identity, and [38] implemented a hierarchical
identity-based architecture based on the hierarchical identity-
based encryption (HIBE) system proposed by Gentry et al
[39]. It predefines user structure, and decryption keys are
created following the structures. Attribute-based encryption
(ABE) provides more flexible decryption key assignment, and
[40] defined access structures of files so that a user can access
a file only if the user’s attributes satisfy the file’s access
structure. Note that the original ABE is proposed by [41],
extensions of which are available in [42–46]. By combining
assorted techniques including above, [47] introduced an ar-
chitecture for a cryptographic storage service that assumes
untrusted service providers.

C. Authentication and Authorization

Data in the cloud need to be accessed by authorized parties.
For that, authentication and authorization mechanisms are
needed. Though this has been already studied for many years,
many researches designed and tuned for cloud computing are
actively conducted lately, which are introduced below.

1) Authentication Framework: The authentication and au-
thorization model could be refined in the multitenant cloud
computing environment, and researches proposing such mod-
els are reported. [48] designed an authorization system suitable
for middleware service in PaaS. The system is based on a
model defining a 5-tuple (Issuer, Subject, Privilege, Interface,
Object), which is incorporated with role-based access con-
trol (RBAC), hierarchical RBAC (hRBAC), path-based object
hierarchies and federation, OpenID, and X.509 to make the
system robust. During an authorization request, it uses all this
information to determine if the request is authorized.

2) Query Control: Though access control permits or denies
access to a resource based on a query, the control could
be more finely tuned by investigating the query. One such
tuning is enabled by a Declarative Secure Distributed Systems
(DS2) framework [49]. This provides secure query processing
in a multi-user cloud environment and rewrites the query
when needed. Note that it also enables seamless integration
of declarative access control policies with data processing to
enable secure sharing among users. Another such tuning is
proposed by [50], which introduced a system, in which cus-
tomers access databases through a privacy-enabling engine that
enforces policies expressed using a semantic Web language
that allows customers to generate compliant queries. If a cus-
tomer’s query violates the policy, the policy reasoner outputs
a justification. Semantic Web language offers assurance that

humans and machines can attain common understanding on
policies and generates justifications that are human-readable.

VIII. WEB SECURITY

Web applications are one type of application that is dis-
cussed above. On the other hand, Web is inevitable for
multitenant services since most of them, especially public
cloud computing services, use the Web as a means for users
to access them. It thus needs to be secured.

A. Server-side Security

Web applications are often multitenant, and need to be
protected from being subverted to keep other tenants from
being victims of a subverted system or malicious tenant. Major
researches on server-side security are introduced below.

1) Content Usage Control: Web pages naturally use or
refer to external contents. This increases the modularity and
usability of Web contents, and is an essential feature of
Web applications. However, that feature, mashup, becomes
a source of vulnerability. Mashup services are created from
the aggregation of services from different origins. While the
owner of an application typically wishes that contents abide
by the Same-Origin Policy (SOP), mashup services sometimes
require cross-domain communication.

To cope with that, Smash [51] considers contents from dif-
ferent origins as different components running in the browser
window. Components can be loaded and unloaded dynamically
and communicate with each other using communication chan-
nels. This channels are monitored and controlled by event hub,
which applies security policies. Another approach is Omash
[52], which treats each web page as an object and allow the
object to communicate only via its declared public interfaces.

In addition to communication control mechanism, content
usage policy within a site could be defined to control external
content usage. Content Security Policy (CSP) [53] is a con-
tent restriction enforcement scheme that allows developers to
specify how content interacts on their websites. A policy is
provided to the site via HTTP, specifying what may load onto
the site and into what context. User input is also protected
and only accessed by the site and its authorized users. Its test
implementation is available as a browser plug-in.

2) Access Control Vulnerabilities: Access control attacks
occur when the access control in a Web application is incor-
rect or missing, allowing unauthorized access to privileged
resources. In multitenant environments, a tenant with low
privilege may be able to gain higher permissions if authoriza-
tion is not correctly enforced. Still, audit facilities can deter
an authenticated tenant from attempting to do harm. Typical
authentication schemes are login-password based, but recent
studies attempt to abandon such practices.

An Origin header [54] provides the origin in the sense
of the SOP, and does not leak information contained in the
URI that is usually provided by the Referrer header. The
Origin header is only usable via POST requests. The header
preserves the user’s privacy, but this requires modification of
browsers to implement the header and accommodate HTTP



transactions fielding it. Developers are also required to enforce
best practices in the usage of GET and POST requests in
that POST should always be used for state-modifying requests
while state-modifying GET requests should be blocked.

Nemesis [55] is a system that automatically tracks the
flow of user credentials when authentication is performed. It
generates an additional HTTP cookie to track requests from
an authenticated user by dynamic information flow tracking
(DIFT) and runs shadow authentication with this information
to enforce developer-specified access control rules. It requires
no modification to the application, either to the authentication
or its access control system. DIFT can reduce false positives
and improve the precision of real-world security tools.

B. Client-Side Validation

Many of current Web applications consist of server-side
and client-side modules. Vulnerabilities on client-side modules
are often caused by the unsafe use of untrusted code within
a software. These vulnerabilities are called client-side vali-
dation (CSV) vulnerabilities, and many codes causing CSV
vulnerabilities are JavaScript. Researches on detecting the
vulnerabilities in advance have been reported.

1) Endpoint Risk Detection: Endpoint risk detection tech-
niques detect client-side vulnerability at the endpoint. Many
of the techniques including FLAX [56] and Zozzle [57]
target JavaScript issues. FLAX is a system that systematically
discovers CSV vulnerabilities by combining the features of
dynamic taint analysis with those of automated fuzz testing to
generate test cases that concretely demonstrate the presence of
the vulnerabilities. Dynamic taint information extracts knowl-
edge of the type of sink operation involved in the vulnerability,
thereby specializing the subsequent black box fuzzing for each
sink type. This method eliminates false alarms that would
result from a purely taint-based tool. Zozzle is a mostly static
JavaScript Malware detector that focuses on heapspray attacks.
It is a Bayesian classifier that learns features on an abstract
syntax tree (AST) of the JavaScript Malware deobfuscation.
These features represent a hierarchical structure of context
(generated during deobfuscation), both benign and malicious,
in order to understand which context leads to which context. It
enjoys efficient AST-based feature extraction and fast pattern
matching. The scheme is integrated into the JavaScript engine.

2) Middlebox Risk Detection: Different from above, this
middlebox risk detection approach requires no modification to
the client. Web content is investigated, processed at the mid-
dlebox, then transfered to the endpoint so that the endpoint will
not be exposed to harmful Web content. Webshield [58] relies
on segregating the Web application code into HTML and non-
HTML content. HTML content processing has two main steps:
an initial page transformation that encodes possible untrusted
data injection points and a dynamic HTML interaction support
that will run JavaScript contents in a sandbox browser and
reflect updates to the real browser in places that were encoded.
It enjoys reasonable overhead in terms of communication,
time, and memory, but it is vulnerable to non-deterministic
execution of non-cacheable contents upon second download

and cannot handle excessive DOM updates. Other such reports
are BrowserShield [59] and SpyProxy [60] though they are not
elaborated on here in the interest of space.

IX. CONSIDERATIONS AND DISCUSSION

This paper identified technical issues on multitenant cloud
computing, which are summarized in Table II. Based on
the table, this section discusses the technical maturity of
multitenant cloud computing and the needs for advancing
operational security.

A. Technical Maturity

The technical maturity, in terms of security, differs among
the technical layers. As can be seen from the above survey
results, some layers have various active researches while
others do not, and some layers have solution proposals to
cope with security issues while others only identify security
issues. HW&SW primitive techniques have been researched
for decades, but the issues are new, and not so many people
could handle the techniques in this layer; thus it was difficult to
find any article on countermeasures to the issues. Hypervisor
techniques are rather new, and so much research focuses on
their development in terms of functionality and performance
rather than security. Researches on OS-layer techniques are
cooling since they have already been researched for decades; it
was not easy for us to identify articles discussing the resource
isolation issues in this layer. Application-layer techniques are
still evolving, and many articles on issues and countermeasures
are found; many of the issues are applicable to non-multitenant
cloud computing, they presented new features for multitenant
cloud computing. Web techniques are also attracting diverse
research since they are critical topics for the emerging SaaS
business. Above disparities come from the differing technical
maturity among techniques in each layer.

Various issues apparently need to be tackled toward the
practical security of multitenant cloud computing services, and
these are often claimed to be the reasons for not using such
services. Nevertheless, as discussed above, these issues arise
partly due to the current stage of technical maturity, and it is
unfair to say at this stage that multitenant cloud computing is
characteristically insecure. Though techniques in some layers
have very few countermeasures at this moment, the situation
will be improved gradually as they approach maturity.

B. Needs for Operational Security

As discussed above, security techniques on multitenant
cloud computing are not yet mature and need to be developed
further. Even if the techniques are reaching maturity, users
never get guarantees on security, and humans remain a point
of vulnerability [61], [62]. One approach coping with that is
implementing adequate cybersecurity operations that needs to
be taken before and after incidents. Though basic operations
do not change, cloud computing requires further complication
on the operations [63].

Many of the users of multitenant cloud computing services
are, however, non-familiar with such operations. In case of



TABLE II
MAJOR SECURITY-RELATED CHALLENGES FOR MULTITENANCY

Layers Categories Issues References

Web Server-side security Content usage control Component access control (Smash/Omash) [51], [52]
Content security policy [53]

Access control vulnerabilities Origin header [54]
Nemesis: shadow authentication [55]

Client-side validation Endpoint risk detection FLAX: CSV vulnerability scanning [56]
Zozzle: JavaScript malware detection [57]

Middlebox risk detection Proxying and auditing communication [58–60]

Application Secure data storing Encrypted data management Progressive elliptic curve encryption (PECE) [25]
Homomorphic encryption [27], [28]

Data integrity Assuring storage correctness [29–32]

Redundancy cancellation Cross-user deduplication [33]

Authentication and authorization Authentication framework Authentication model for multitenant environment [48]

Query control DS2 framework providing query rewriting [49]
Semantic policy [50]

User data isolation Process isolation Information flow control [35]

Selective decryption techniques (Hierarchical) ID-based encryption [36–39]
Attribute-based encryption [40–46]
Cryptographic cloud storage service architecture [47]

Operating System Privilege separation MAC-based separation [20], [21]
Capsicum: capability-based separation [23]
VulSan: QoP analyzer [22]

Kernel integrity NICKLE: kernel rootkit prevention [24]

Hypervisor VMM security Vulnerabilities Existing VMM’s vulnerabilities [7]

Rootkits VM-based rootkits [9] [10]

Transparency VMM-indicative discrepancy information [11]
VMM detection experiment under Pentium IV [12]

Platform integrity Building trustworthy platforms [13], [15]
Measuring platform integrity [16]

VM security Introspection VM introspection for Xen [18]

Redundancy cancellation sHype: MAC-based security architecture [19]

HW&SW Primitive Programming code Managed runtime security Java and .net vulnerabilities [1], [2]
Java introspection [3]

Sandboxing User-level sandboxing [4]

Hardware processing Shared processor resources Side channels in Pentium 4 [5]
Intel architecture problem [6]

cloud computing, the matter is exacerbated due to its resource
combination nature, which requires complicated configurations
and leads to misconfigurations that are vulnerable to attacks.
Thus these operations had better be automated or semi-
automated to improve operation efficiency and to avoid any hu-
man incidents, and various such activities are already currently
available [64–67]. Along with the multitenancy techniques,
cybersecurity operations need to be advanced further toward
secure multitenant cloud computing environment.

X. SUMMARY AND CONCLUSION

This paper introduced technical layers and categories, with
which it identified and structured security challenges and
approaches of multitenant cloud computing. The survey was
a snapshot of security issues of multitenant cloud computing,

and mainly focused on the issues related to resource isolation
techniques. Based on the survey, this paper discussed the
differing technical maturity among technical layers; some
layers such as hypervisor and Web are still evolving, and their
security techniques have yet to be improved further, while
others are approaching a certain technical maturity. Thus it is
unfair to say at this moment that cloud computing services are
characteristically insecure. To use cloud computing services,
users need to consider operational security. Security operations
and their automation need to be researched further to improve
their efficiency and to alleviate security risks. Tackling secu-
rity issues from both technical and operational aspects will
eventually expedite wider deployment of multitenant cloud
computing.
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